

NEW DRUG PRODUCT

- Development
 - Quality Target Product Profile
 - Preformulation
 - Formulation
 - Manufacturing Process
- Validation

(Process Performance Qualification)

 Commercial manufacturing process (Continued Process Verification)

References:

• ICH PHARMACEUTICAL DEVELOPMENT Q8(R2)

Current Step 4 version dated August 2009

• ICH QUALITY RISK MANAGEMENT Q9

Current Step 4 version dated November 2005

• ICH SPECIFICATIONS: Test Procedures and Acceptance Criteria for

new Drug Sustances and new Drug Products:

CHEMICAL SUBSTANCES Q6A

Current Step 4 version dated October 1999

• ICH PHARMACEUTICAL QUALITY SYSTEM Q10

Current Step 4 version dated June 2008

FDA Guidance for Industry

Process Validation: General Principles and Practices

January 2011 CGMP - Revision 1

EMA Guidelines for GMP for Medicinal Products

for Human and Veterinary Use

Annex 15: Qualification and Validation March 2015

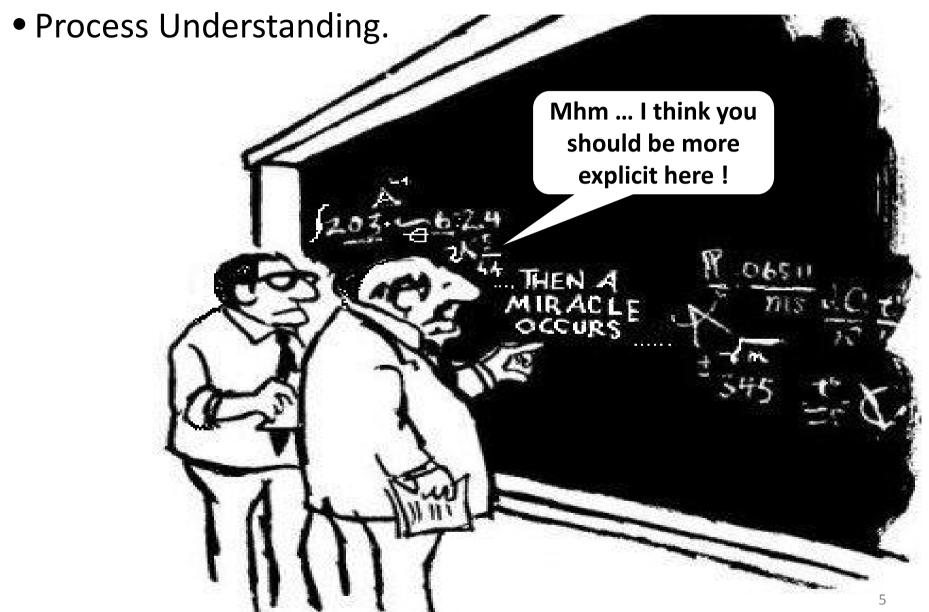
FDA PHARMACEUTICAL CGMPS FOR THE 21ST CENTURY

A RISK-BASED APPROACH September 2004

FDA Guidance for Industry PAT

A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance U.S. September 2004

The aim of pharmaceutical development is:

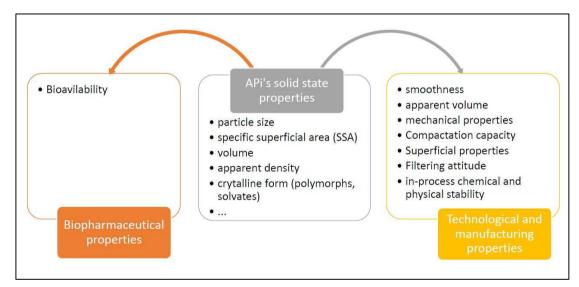

to design a quality product and its manufacturing process to consistently deliver the intended performance of the product.

The information and **knowledge gained from pharmaceutical development** studies and manufacturing experience **provide scientific understanding** to support the establishment of the design space, specifications, and manufacturing controls.

It is important to recognize that Quality cannot be tested into products.

Process Knowledge

Pharmaceutical development should include the following elements:


- Quality Target Product Profile (QTPP): it relates to quality, safety and efficacy, considering e.g., the route of administration, dosage form, bioavailability, strength, and stability; drug product quality criteria.
- Identifying potential **Critical Quality Qttributes** (CQAs) of the **drug product**, so that those product characteristics having an impact on product quality can be studied and controlled.
- Determining the **Critical Quality Attributes** of the **drug substance**, excipients etc., and selecting the type and amount of excipients to deliver drug product of the desired quality;
- Link **Material Attributes** and **Process Parameters** of the appropriate manufacturing process, to Drug Product CQAs by using **Risk Assessment** that is a valuable science-based process.
- Defining a **Control Strategy** to ensure that a product of required quality will be produced consistently.

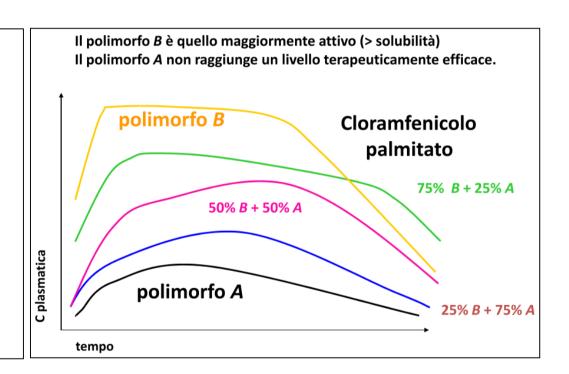
Qua	lity Target Prod	duct Profile	Justification		
Dosage form		Tablet	Pharmaceutical equivalence requirement: same dosage form		
Dosage design Route of administration Dosage strength Pharmacokinetics Stability		Immediate release tablet without a score or coating	Immediate release design needed to meet label claims Pharmaceutical equivalence requirement: same route of administration Pharmaceutical equivalence requirement: same strength Bioequivalence requirement Needed to ensure rapid onset and efficacy Equivalent to or better than RLD shelf-life		
		Oral			
		20 mg			
		Immediate release enabling T _{max} in 2.5 hours or less; Bioequivalent to RLD			
		At least 24-month shelf-life at room temperature			
Drug product quality attributes	Physical Attributes Identification Assay Content Uniformity Dissolution	Pharmaceutical equivalence req compendial or other applicable assay, purity, and quality).	uirement: Must meet the same (quality) standards (i.e., identity,		
	Degradation Products Residual Solvents Water Content Microbial Limits	assay, porny, and quarry).			
Container closure s	Residual Solvents Water Content Microbial Limits	Container closure system qualified as suitable for this drug product	Needed to achieve the target shelf-life and to ensure tablet integrity during shipping		
	Residual Solvents Water Content Microbial Limits	Container closure system qualified as suitable for this	shelf-life and to ensure tablet		

PHARMACEUTICAL DEVELOPMENT

- •Components of the Drug Product
 - Drug Substance
 - Excipients
- Drug Product
 - Formulation Development
 - Manufacturing Process Development

Solid state's properties (Fonte: Aschimfarma, adapted from A. Gazzaniga)

The physicochemical and biological properties of the drug substance can influence the **performance** and **manufacturability** of the drug product



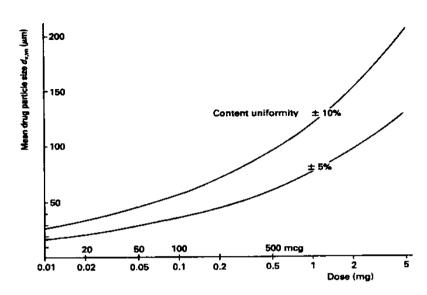
- Polymorphism
 - Stability
 - Dissolution
 - Compaction (high amount)
- Particle size
 - Distribution (CU)
 - Dissolution
- Particle shape
 - Compaction
 - Segregation (CU)

The potential effect of drug substance properties on drug product can be used to justify the drug substance specification.

EXAMPLES FROM THE SCIENTIFIC LITERATURE, DESCRIBING NON-EQUIVALENCE OF THE FORMULATIONS DUE TO A **DIFFERENT PHYSISCAL FORM OF THE ACTIVE INGREDIENT** (AMORFOUS FORMS, POLYMORPHISM, SOLVATES)

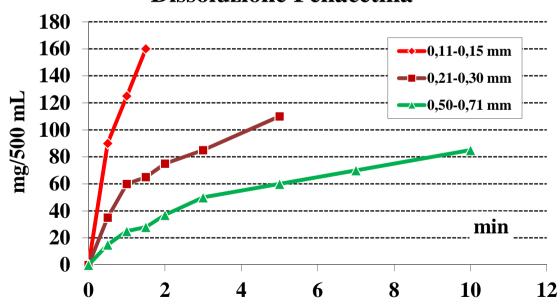
- •Novobiocin (1960)
- •CAF palmitate (1967, 1980)
- •Ampicillin (1968, 1981)
- Chlortetracycline (1974)
- Amobarbital (1981)
- •6-mercaptopurine (1981)
- Phenylbutazone (1984)
- •Indomethacin (1987)
- Cimetidine (1987)
- •Carbamazepine (1992, 2000, 2003)
- Oxytetracycline chlorhydate (1999)

Particle Size

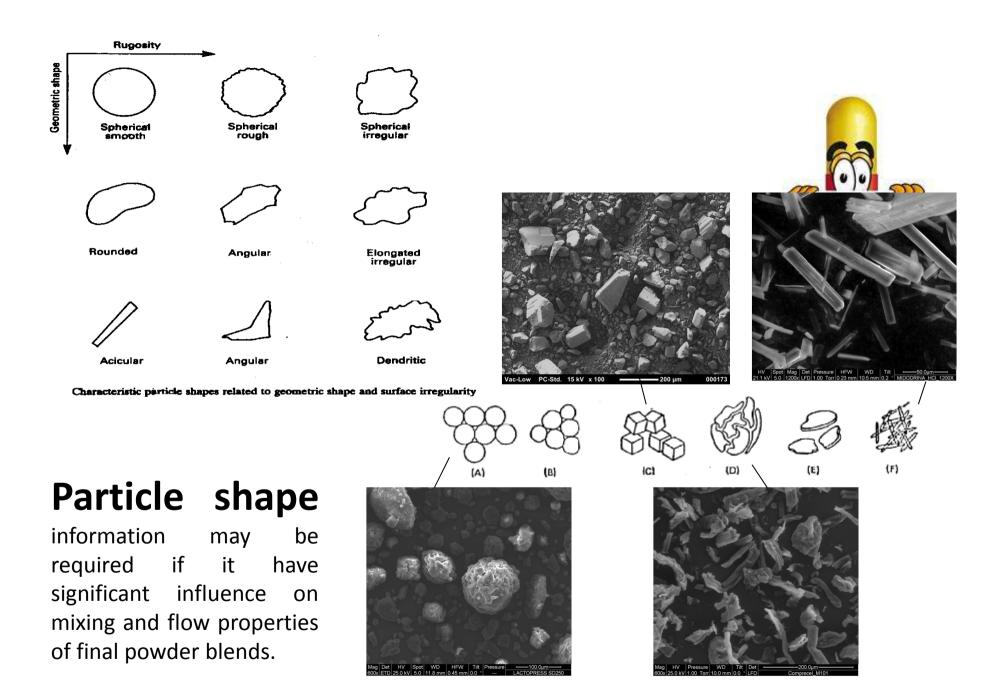

For the drug substance, the International Conference on Harmonization (ICH) guideline Q6A provides guidance (decision tree #3) on when a particle size specification should be considered [5].

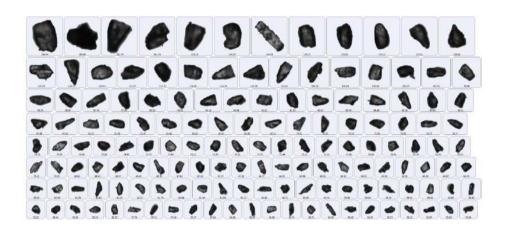
A particle size specification of the drug substance is required if it is critical for drug product performance (i.e., dissolution, solubility, bioavailability, content uniformity, stability, or product appearance) or manufacturability (i.e. processability, flowability, blend uniformity, and compactibility, etc.).

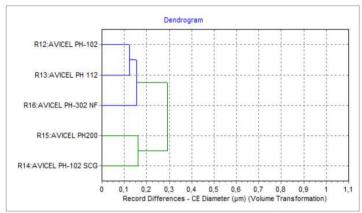
Direct compression is a process by which the tablets are compressed directly from powder blends of the active pharmaceutical ingredient (API) and suitable excipients,.


For these different components (e.g., API, fillers, disintegrants, lubricants, etc.), if the differences in the **particle size**, **shape**, or **density** are significant, the powder blend (i.e., the mixture) may have a tendency to segregate, which will result in failure of **blend uniformity**.

Dissoluzione Fenacetina

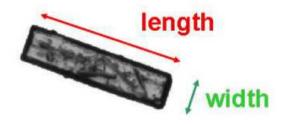

Limiting particle sizes consistent with content uniformity and increasing drug doses $(0.01-5\ mg)$.

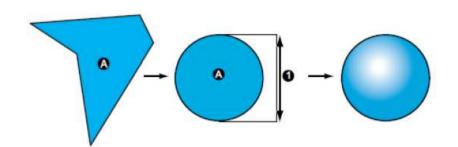




Università di Pavia - Aprile 2007

C.T.D. e Sviluppo farmaceutico




$$Aspect\ ratio = \frac{Larghezza}{lunghezza}$$

$$Elongation = 1 - \frac{Larghezza}{lunghezza}$$

$$Circularity = \frac{2 \times \sqrt{\pi \times Area}}{Perimeter}$$

$$Convexity = \frac{Perimeter\ di\ A + B}{Perimeter\ di\ A}$$

$$Volume = \frac{\pi \times Diametro \ CE^2}{6}$$

CE Diameter [Diametro del cerchio equivalente] - il diametro ● di un cerchio con la stessa area (A) di quella dell'immagine della particella, come mostrato di seguito:

POLVERI

La possibilità di misurare alcune proprietà consente di ottenere informazioni complete e definitive su ingredienti farmaceutici e di migliorare la conoscenza e l'efficienza dei processi produttivi.

Granulometria:

Granulometria a diffrazione Laser: USP 429, EP 2.9.31, JP 10, ISO 13320.

Morfologia

Analisi automatizzata di immagine: USP 776, EP 2.9.37, JP 3.04, ISO 13322

Microscopia Elettronica a Scansione SEM: USP 1181.

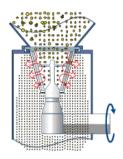
Area superficiale BET

Area Superficiale Specifica BET: USP 846.

Densità

Densità reale di solidi e polveri – picnometria a gas: USP 699.

<u>Porosità</u>


Porosimetria ad intrusione di Mercurio: USP 267

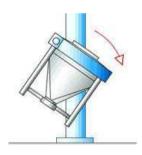
Assorbimento di acqua

Dynamic Vapor Sorption DVS: USP 1241

Manufacturing phases

Milling

Drying

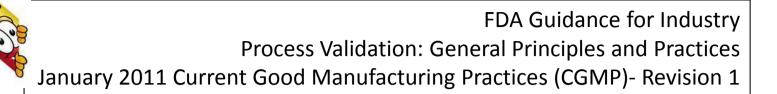


Tabletting/Filling

Granulation (Wet/Dry)

Blending

Coating


Process Validation is:

the documented evidence that the process,
operated within established parameters,
can perform effectively and reproducibly to produce a medicinal product
meeting its predetermined specifications and quality attributes.
(ICH Q7 - EMA)

Process Validation is:

the collection and evaluation of data, from the process design stage throughout production, which establishes scientific evidence that a process is capable of consistently delivering quality product

(FDA)

В.	Stage 1 — Process Design	8
	Building and Capturing Process Knowledge and Understanding	
	Establishing a Strategy for Process Control	
	Stage 2 — Process Qualification	
1.	Design of a Facility and Qualification of Utilities and Equipment	
2.	Process Performance Qualification	11
	PPQ Protocol	
	PPQ Protocol Execution and Report	
	Stage 3 — Continued Process Verification	

FDA encourages the use of modern pharmaceutical development concepts, quality risk management, and quality systems at all stages of the manufacturing process lifecycle.

Stage 1 – Process Design:

The commercial manufacturing process is defined during this stage based on knowledge **gained through development** and scale-up activities.

A successful validation program depends upon information and knowledge from product and process development.

This knowledge and understanding is the basis for establishing an approach to control of the manufacturing process that results in products with the desired quality attributes. Manufacturers should:

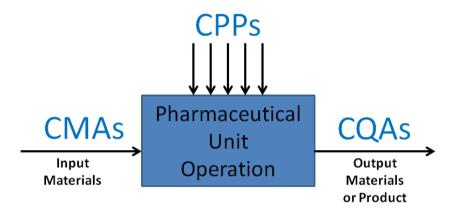
- Understand the sources of variation
- Detect the presence and degree of variation
- Understand the impact of variation on the process and on product attributes
- Control the variation in a manner commensurate with the risk

Product development activities provide key inputs to the process design stage, such as the intended dosage form, the quality attributes, and a general manufacturing pathway.

Stage 2 _ **Process qualification**: Confirming that the manufacturing process as designed is capable of reproducible commercial manufacturing.

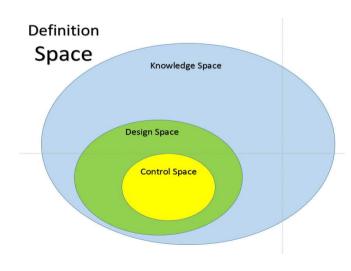
5.21. A process validation should be defines the critical process parameters (CPP), critical quality attributes (CQA) and the associated acceptance criteria which should be based on development data or documented process knowledge.

a robust product development process is in place to enable successful process validation.


The sampling plan.

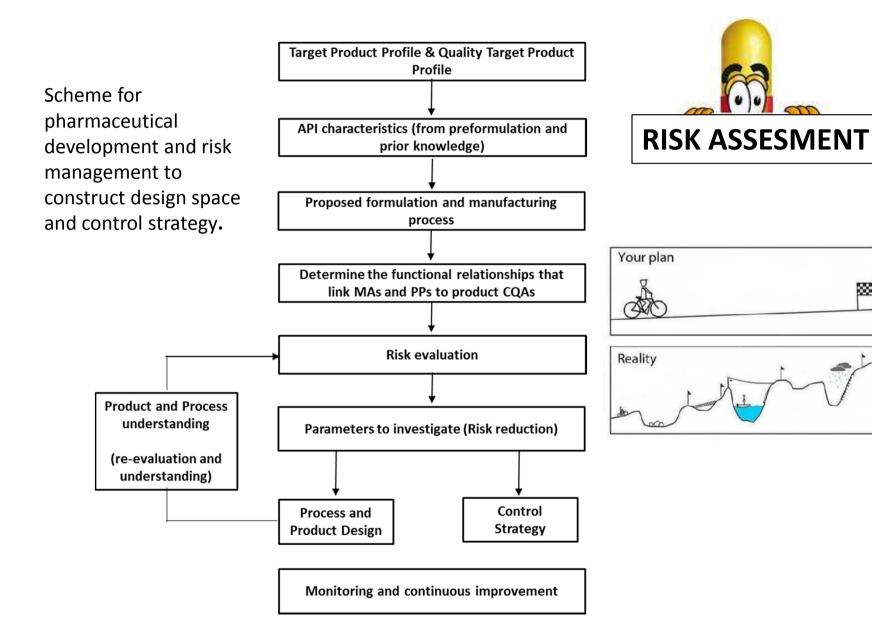
The number of samples should be adequate to provide sufficient statistical confidence of quality both within a batch and between batches. The confidence level selected can be based on risk analysis as it relates to the particular attribute under examination.

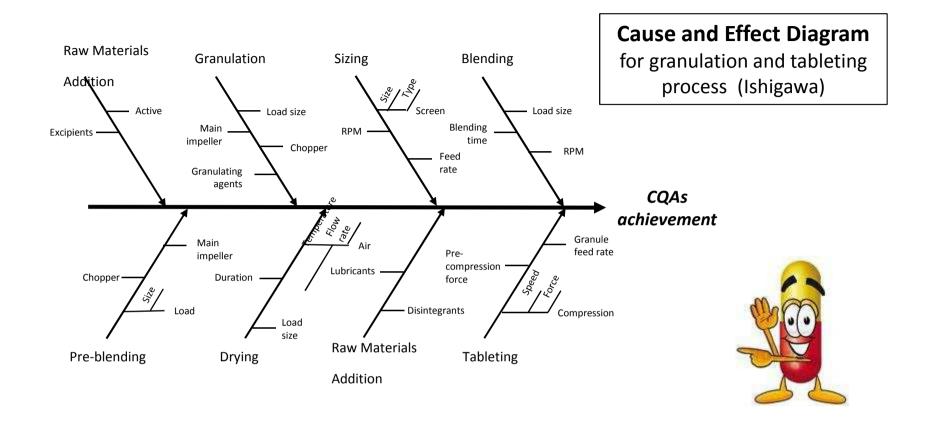
Criteria and **process performance indicators** that allow for a science- and risk-based decision about the ability of the process to consistently produce quality products. A description of the **statistical methods to be used in analyzing all collected data** (e.g., statistical metrics defining both intra-batch and inter-batch variability).

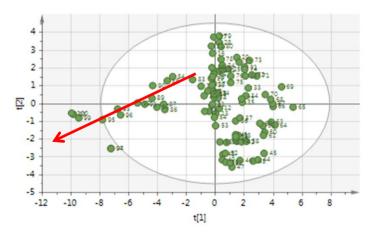

Critical process parameters (CPP) and Critical quality attributes (CQA)

Design Of Experiments (DOE)

is a structured, organized method for determining the relationship between factors affecting a process and the output of that process


$$CQAs = f(CPP_1, CPP_2, CPP_3 ... CMA_1, CMA_2, CMA_3...)$$





Design Space: The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality.

Multivariate Analysis PCA Score plot.
Warning limit (the ellipse) is displayed.
The arrow shows the process drift direction

Stage 3 — Continued Process Verification (Ongoing Process Verification)

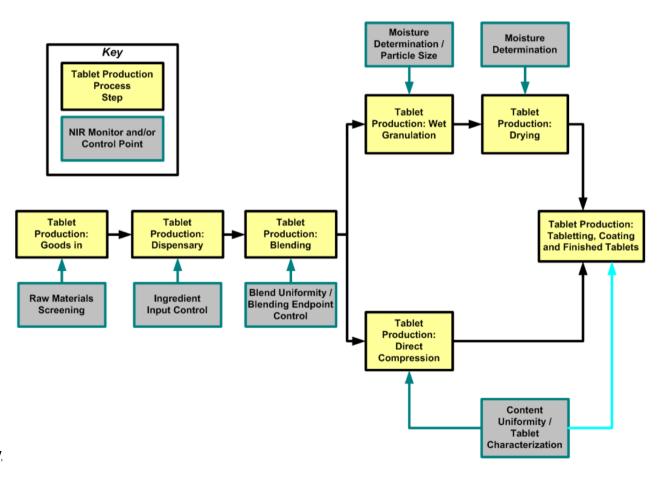
Documented evidence that the process remains in a **state of control** during commercial manufacture.

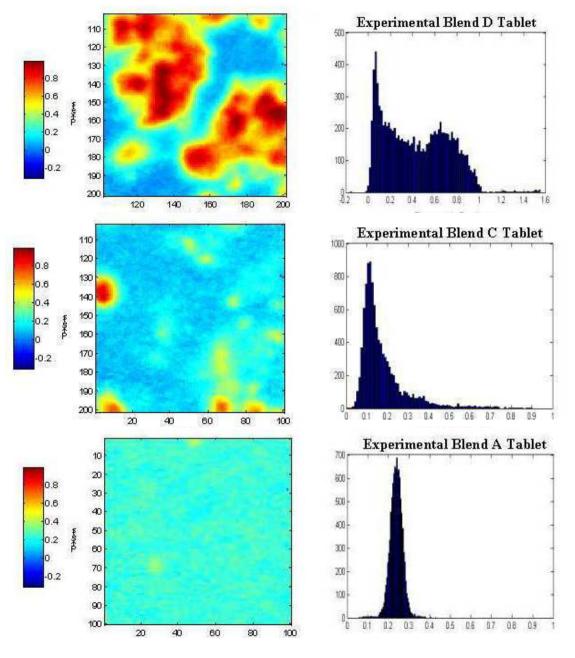
State of control. <u>A condition in which the set of controls consistently provides assurance of acceptable process performance and product quality.</u>

Good process design and development should anticipate significant sources of variability and establish appropriate detection, control, and/or mitigation strategies, as well as appropriate alert and action limits.

Process Capability Analysis

Estimate the potential percent of defective product

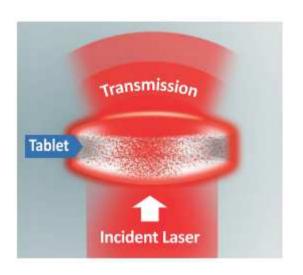

Cp value	cp=0.5	cp=1	cp=3		
graphical view of different cp values	UGW	ugw	nem		
values statistically out of limit	1358%		approx. 0		
values in the limit	86,42 %	99,73 %	> 99,999999 %		
Result:	process statistically out of control	process statisticaly	y under control		


More advanced strategies, which may involve the use of **Process Analytical Technology** (PAT), can include timely analysis and control loops to adjust the processing conditions so that the output remains constant.

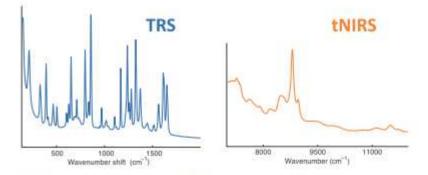
Manufacturing systems of this type can provide a higher degree of process control than non-PAT systems.

Process Analytical Technology

A system for designing, analyzing, and controlling manufacturing through timely measurements (i.e., during processing) of critical quality and performance attributes of raw and inprocess materials and processes with the goal of ensuring final product quality.


NIR Spectral Imaging

Analysis of Tablets to Assess Powder Blend Homogeneity

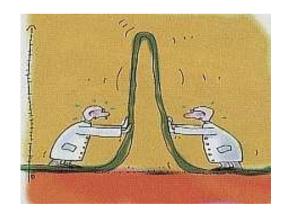

AAPS PharmSciTech 2002; 3 (3) article 17

CGMPfor 21st - P.A.T. A.MMLS.FI - Ph.Tech.Dep.

Transmission Raman Spectroscopy

- Low or no sensitivity to moisture, particle size and thickness variation
- ✓ Easy-to-interpret sharp spectral features
- ✓ Low LOQ: <1% is often possible
 </p>
- ✓ Sensitivity to the sample bulk
- HIGH-THROUGHPUT
- NON-DESTRUCTIVE
- NON-INVASIVE
- NO SAMPLE PREPARATION

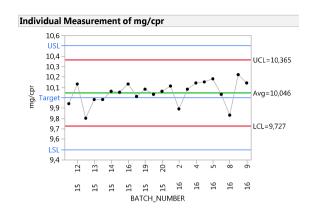
TRS spectrum with discrete API and excipient features, compared with transmission NIR for the same 3-API product

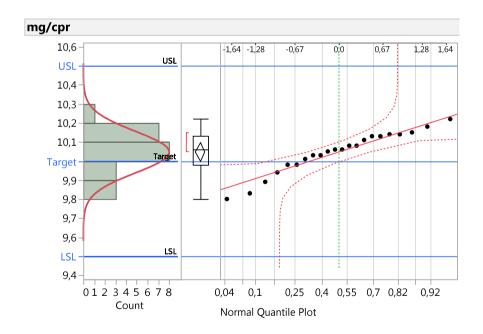

Measuring Low Dose APIs and Polymorph Content

Content Uniformity • Assay • ID • Polymorph Quantification • Formulation Development

Statistical tools

	Intra B	atch	Batch to batch			
Statistical tool	Considerations	Acceptance criteria	Considerations	Acceptance criteria		
Descriptive statistic (e.g. mean, median, standard deviation, coefficient of variation, range, etc.)	Basis for evaluation that must be integrated with other tools	Results within specification. Generally, CV% between samples is used to evaluate data	Basis for evaluation that must be integrated with other tools	Results within specification. Generally, CV% between batches is used to evaluate data		
Histograms	Possibility to evaluate distribution shape, process centering and process variation (suggested link with capability evaluation). Consider if enough data are available for intra batch evaluation	Output should be normal distributed and centered around the mean of the specification	Possibility to evaluate distribution shape, process centering and process variation (suggested link with capability evaluation). To have sufficient data suggested to group all samples result from all batches	Output should be normal distributed and centered around the mean of the specification		
Process capability (Cpk)	Possibility to evaluate ability of a process to provide stable outcome within established limits. Appropriate population and normal distribution must be taken into account. Consider if enough data are available for intra batch evaluation.	Depending on criticality of process different limits can be set, however, if Cpk ≥ 1.33, the process is generally considered centered and under control	Possibility to evaluate ability of a process to provide stable outcome within established limits. Appropriate population (at least 30 data points) and normal distribution must be taken into account. To have sufficient data suggested to group all samples result from all batches	Depending on criticality of process different limits can be set, however, if Cpk ≥ 1.33, the process is generally considered centered and under control		
Control charts, trends and shifts	Generally, it is not app	olicable in PPQ (not e	enough batches)			
ANOVA (Nested Anova)	Generally, it is not app	olicable intra batch	Possibility to compare means and variance, between batches	Depending on the selected confidence level		


Suitable for traditional approach PPQ data analysis.



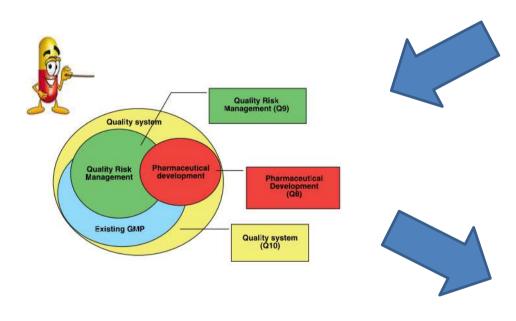
Statistical Analysis

Tolerance IntervalsProportionLower TIUpper TI1-Alpha0,9909,65843210,43430,950

Dixon Outlier Test

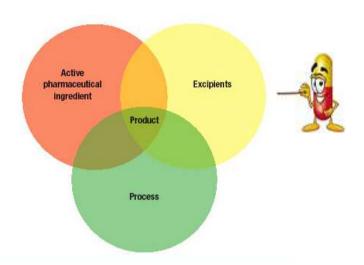
Goodness-of-Fit Test

Shapiro-Wilk W Test


W Prob<W 0,947759 0,2849

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Capability Analysis								
Specification	Value	Portion	% Actu	al				
Lower Spec Limit Spec Target Upper Spec Limit	10	Below LSL Above USL Total Outside	0,000 0,000 0,000	00				
Long Term Sigma								
		\		Capability	Index	Lower	CI Upp	er CI
				PP	1,525	1,0	067	1,982
	/	\		PPK	1,383	0,9	942	1,824
				CPM	1,404	1,0	016	1,846
-3s	/ Mei	an \ +3s		PPL	1,666	1,1	L45	2,183
	$ \downarrow$ 1		_	PPU	1,383	0,9	944	1,819
. [<u></u>					Sigma
LSL	Targe	t L	JSL ——	Portion	Perc	ent	PPM	Quality
9.6	9.8 10	10,2 10,4	'	Below LSL	0,0	000	0,2890	6,498
9,0	5,6 10	10,2 10,4		Above USL	0,0	017	16,6160	5,650
Sigma = 0,10931	L			Total Outside	e 0,0	017	16,9050	5,646


A critical point of the process is the ability to ensure a productive dialogue between:

- chemical development
- formulation development
- manufacturing

Quality By Design

A systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management.(ICH Q8)

Grazie per l'attenzione

